Security and Informatics in Pathology

ForPath Workshop

Ph. Delvenne - B. Stevens University Hospital of Liège Belgium

Pathology Informatics

- = Science of the capture, storage and processing of information in the laboratory setting
- -> Security and privacy
- -> Decision support
- -> Interface development
- -> Modelling
- -> Bioinformatics
- -> Whole Slide Imaging (WSI)

WSI: OUTLINES

- 1) Main technological features
- 2) Advantages
- 3) Drawbacks
- 4) Current applications and future developments
- -> The example of the "Cytomine" plateform at the ULg (B. Stevens)

WSI: main technological features

= Process by which glass microscopic slides are scanned and then viewed on a computer as virtual slides

microscope

The virtual slides may be explored in a way comparable to the conventional microscope

- 1) Viewing at different magnifications
- 2) Navigation in each direction
- 3) Allowing focusing up and down

WSI: critical components

- > Hardware (scanner)
- Software (image creation and management)
- Network connectivity

Capacity: one slide vs hundred slides

Image acquisition techniques & speed Ability to scan multiple focus layers → 3D images

Ability to scan fluorescent labelled cells

WSI: OUTLINES

- 1) Main technological features
- 2) Advantages
- 3) Drawbacks
- 4) Current applications and future developments
- -> The example of the "Cytomine" plateform at the ULg (B. Stevens)

WSI: advantages

 Overview image together with the high power view

Overview image together with the high power view

→ Better orientation within the slide and easier navigation in the different regions of interest

WSI: advantages

- Overview image together with the high power view
- · Slide availability

Slide availability

→ No need to request slides from outside institutions -> no more slide transport from remote labs

→ No need to go to the slide storage room -> no more wasted time for the technical staff looking for lost slides or pulling old bx for comparison, ...

Slide availability

→Integration of the images in the electronic patient file

WSI: advantages

- Overview image together with the high power view
- Slide availability
- Portability

« Anytime from anywhere »

WSI: advantages

- Overview image together with the high power view
- Slide availability
- Portability
- · Permanence of the images

Permanence of the images

Saved image

PCR

Permanence of the images

Permanence of the images

"Lost" films. Examinations not interpreted by radiologists.

WSI: advantages

- Overview image together with the high power view
- Slide availability
- Portability
- · Permanence of the images
- Use of automated image analysis algorithms

Use of automated image analysis algorithms

WSI: OUTLINES

- 1) Main technological features
- 2) Advantages
- 3) Drawbacks
- 4) Current applications and future developments
- -> The example of the "Cytomine" plateform at the ULg (B. Stevens)

WSI: drawbacks

- Time of scanning: 50 mm² at x20: 1-4 min
- Storage of the images: one single digital slide -> 3-50 Gigabites
- Current unclear regulatory guidelines: use of WSI in routine diagnosis?
- Diagnosis longer compared to glass slide?
- Costs: direct (scanner,...) and indirect (support, technical time,...)

WSI: OUTLINES

- 1) Main technological features
- 2) Advantages
- 3) Drawbacks
- 4) Current applications and future developments
- -> The example of the "Cytomine" plateform at the ULg (B. Stevens)

WSI: current applications

1. Education

Education: why to shift to virtual microscopy?

1. Financial restrictions

Financial restrictions

- Many slide sets are necessary for the practical lessons
- Variation between serial sections from the same tissue blocks
- > Light microscopes need qualified technical staff to maintain them

Education: why to shift to virtual microscopy?

- 1. Financial restrictions
- 2. Reduction in the amount of time allocated to education in pathology
- 3. New learning approaches such as problem based learning (PBL)
- 4. Decreased number of pathology graduates and lower number of colleagues enrolling academic careers

Education: why to shift to virtual microscopy?

- 1. Financial restrictions
- 2. Reduction in the amount of time allocated to instruction in pathology
- 3. New learning approaches such as problem based learning (PBL)
- 4. Decreased number of pathology graduates and fewer colleagues taking up academic posts
- 5. Preference of students

Preference of students

- 1) Most students do not like using light microscopes for the examination of tissue sections:
 - « ...light microscope
 difficult, frustrating and
 tiresome,... »
 - * poor quality of light microscopes **
- 2) Very good feedback of students for virtual microscopy

Education: advantages of WSI

- > Access to an unlimited number of students
- No variation between serial sections from tissue blocks
- Possibility for annotations, links, questions, videos, sound clips,...
- Possibility to learn pathology outside practical lessons

WSI: current applications

- 1. Education
- 2. Digital diagnosis

Digital diagnosis

- Current use of WSI:
 - Consultations of difficult cases (possibility to discuss cases online & to have a diagnosis within hours)
 - Remote frozen section diagnoses (pathology labs distant from hospitals; night emergencies)
- First line diagnosis???

WSI: current applications

- 1. Education
- 2. Digital diagnosis
- 3. Tumor Boards
- 4. Quality Assurance (cases distributed virtually -> money saved compared to glass slides)

External quality assurance organisations

Body	Host country	External QA scheme	Accreditation	Website
UK NEQAS ICC & ISH	UK	~	***************************************	www.ukneqasicc.ucl.ac.uk
CPA	UK	Accredits UK NEQAS ICC & ISH schemes	✓	www.cpa-uk.co.uk
UK Accreditation Service	UK		✓	www.ukas.com
CAP	USA	✓	✓	www.cap.org
Canadian QA	Canada	✓		www.qmpls.org www.cancercare.on.ca
NordiQC	Norway, Denmark, Sweden, Finland	✓		www.nordiqc.org
AFAQAP	France	✓		www.afaqap.org
RCPAQAP	Australia, New Zealand	✓		www.rcpaqap.com.au

WSI: current applications

- 1. Education
- 2. Digital diagnosis
- 3. Tumor Boards
- 4. Quality Assurance (cases distributed virtually -> money saved compared to glass slides)
- 5. Research

Research

RNAScope counting, breast tumors (C. Josse, GIGA)

Tumor/necrosis segmentation & IHC quantification (Ph. Martinive, GIGA)

Zebrafish phenotype recognition (M.Muller, GIGA)

Follicule Counting, ovarian, (C. Munaut, GIGA)

IHC Couting, nephrology (F.Jouret, GIGA)

MALDI imaging (E. De Pauw, GIGA)

WSI: future developments

- Faster scanning speed and better compression algorithms
- Cheaper storage solutions -> routine scanning of all cases ???
- Large multicenter validation studies for the use of WSI in primary routine diagnosis

Some IVD devices already use digital imaging

- Hematology analyzers
- Chromosome analyzers
- Urine analyzers
- FISH enumeration systems

HER-2 as assessed by the PathVysion HER-2 DNA Probe

Some IVD devices already use digital imaging

- Cervical Cytology
 Imaging Systems
 - Cytyc/Hologic ThinPrep Imaging System
 - Becton
 Dickinson/TriPath
 FocalPoint Guided
 Screening System

Automation of Pap test screening

Project with CellSolutions (www.cellsols.com) on PAP test (US) Successful pilot study at CHU Liège in [2012,2013] (Dr. Ph. Delvenne, A. Delga) Next steps [2013-...]: clinical trial in the US for FDA approval

Conclusion

"Digital pathology is no longer a dream. Doctors have begun to diagnose diseases by using computers like microscopes...It's a change that promises faster diagnoses for patients and potential cost savings for hospitals."

Story on PBS's Nightly Business Report, July 10, 2008

WSI: OUTLINES

- 1) Main technological features
- 2) Advantages
- 3) Drawbacks
- 4) Current applications and future developments
- -> The example of the "Cytomine" plateform at the ULg (B. Stevens)