GENETIC MARKERS IN LYMPHOMA
a practical overview

P. Heimann
Dpt of Medical Genetics
Erasme Hospital - Bordet Institute
• B and T cell monoclonalities

Rearrangement of immunoglobulin and TCR genes

may help to establish the malignant nature of a lymphoproliferative lesion

• Identification of non-random chromosomal abnormalities

$t(14;18)$ or $t(11;14)$ translocations in FL and MCL respectively

allow lymphoma subtype classification
B and T cell monoclonality

what does that mean?
During early lymphoid development, the genes encoding antigen receptor undergo rearrangement

example of the Ig heavy chain locus (IgH)
Schematic diagram of IgH gene rearrangements

: indicate the primers location for PCR method
Schematic representation of mono and polyclonal populations detected by PCR.

- monoclonal population implies malignant process
- polyclonal population implies benign lymphoid proliferation

but...
the rule is not absolute!
B and T cell monoclonalities - PCR

Illustration on ethidium-bromide-stained gel

B cells

T cells

*? oligoclonality
B and T cell monoclonalities - PCR
Illustration on Genescan

polyclonality

monoclonality
PCR

Advantages: (vs Southern Blot)
- simple and faster
- requires much less amounts of pathological material
- greater quantitative sensitivity
- can be applied on DNA paraffin-embedded tissue

Disadvantages: (vs Southern Blot)
- lower qualitative sensitivity
- need to use several different PCR strategies in order to increase the overall detection rate *

*genomic sequence in a given antigen receptor may vary significantly from one to another and multiple sets of primers may be required
PCR strategies

• Necessity to use several sets of primers in order to increase the overall detection rate (~90%) of the PCR method: FR3-JH, FR1c-JH, FR1f-JH,...

• This detection rate varies according to the underlying disorders
Detection rates by PCR according to the subtype of B-cell neoplasms

- SLL ~ 100 %
- MCL ~ 100 %
- DLBCL ~ 60 %
- FL ~ 50 %
PCR - Pitfalls

False negative:
- chromosomal translocations into the IgH locus (in FL or DLCL)
- Somatic hypermutation (in FL and DLCL)
- partial D-J rearrangements (in immature malignancies)
- no VDJ rearrangement produced (in immature malignancies)
- failure of the IgH primers to recognize the VH segment involved

False positive:
- very weak amount of DNA
- reactive lymphoid populations
Rules to known (1)

- Genotype does not correspond to phenotype!

Lineage infidelity of Ig and TCR gene rearrangements ("Illegitimate rearrangements"):
 - 50-60% of lymphoblastic B cell malignancies.
 - 20-30% of lymphoblastic T cell malignancies.
 - ~10% of mature B and T cell malignancies.

Therefore, Ig and TCR gene rearrangements should not be systematically used as markers for B and T cell lineages, respectively.
Monoclonality is not always equivalent to malignancy!

- Clinically benign lymphoproliferations may consist of clonal cell populations.

- Although this pitfall is encountered in B cells, it is mainly observed in T cell monoclonality (cf limited combinatorial diversity of TCR-γ and -δ genes).
Some cases of unequivocal B-cells lymphoma do not generate a clonal signal by PCR despite histological and immulogic evidences of malignancy.

Any result must be interpreted in view of other findings and clinical informations.
Chromosomal abnormalities

closely associated with particular morphological subtypes of lymphoma

diagnostic markers

prognostic/predictive markers

molecular targets for rationale therapies

mainly chromosomal translocations
Two distinct types of chromosomal translocations at molecular level

A. Quantitative changes

\[BCL2-J_{\text{\scriptscriptstyle H}}, \ BCL1-J_{\text{\scriptscriptstyle H}}, \ldots \]

B. Qualitative changes

\[ALK-NPM, \ \text{API1-MALT} \]
Recurrent genetic abnormalities in lymphoma

<table>
<thead>
<tr>
<th>Recurrent Abnormality</th>
<th>Lymphoma Subtype</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(14;18) / BCL2 - J_H</td>
<td>in follicular lymphoma</td>
</tr>
<tr>
<td>t(11;14) / Bcl1 - J_H</td>
<td>in Mantle Zone lymphoma</td>
</tr>
<tr>
<td>t(11;18) / API2-MALT1</td>
<td>in Marginal Zone lymphoma</td>
</tr>
<tr>
<td>del(7q), +3</td>
<td></td>
</tr>
<tr>
<td>t(3;14) / BCL6 - J_H</td>
<td>in Diffuse Large Cell lymphoma</td>
</tr>
<tr>
<td>t(8;14) / cMYC - J_H</td>
<td>in Burkitt lymphoma</td>
</tr>
<tr>
<td>t(2,5) / ALK-NPM</td>
<td>in Anaplastic Large Cell Lymphoma</td>
</tr>
</tbody>
</table>
Follicular lymphoma (1)

t(14;18)(q32;q21) - \textit{BCL2-IgH} oncogene

\[\downarrow \]

overexpression of the antiapoptotic Bcl2 protein

\[\downarrow \]

cell survival favoring increased genomic instability

\[\downarrow \]

Follicular lymphoma
Follicular lymphoma (2)

t(14;18)(q32;q21) / BCL2 -IgH

FISH: «double fusion strategy»
Follicular lymphoma (3)
what to know

grade 1
\[\rightarrow \] t(14;18) positive in 80-90% of cases

grade 2

grade 3
\[\rightarrow \] t(14;18) positive in ± 30% (mainly grade 3a)

\[\rightarrow \] t(14;18) negative in ± 70% (mainly grade 3b)

BCL2 overexpression
\[or \]
no BCL2 overexpression
3q27/ BCL6 rearrangement
Follicular lymphoma (5)

what to know

Conventional cytogenetic and/or FISH

“golden standard methodologies”

PCR: - four known different breakpoints on Bcl2 gene

- mbr in ~ 45 % of cases
- mcr in ~ 7 % of cases
- 3’UTR in ~ 10 % of cases
- icr in ~ 10 % of cases

→ several sets of primers required

- some breakpoints are still unknown
Follicular lymphoma (4)
what to know

Methods: different levels of qualitative sensitivity

- FISH: > 95%
- Cytogenetics: ~ 80-90%
- PCR BCL2(mbr)-JH: 40-50%
- PCR BCL2(mcr)-JH: ~ 10%
PCR Bcl2-JH in follicular lymphoma

Illustration

at diagnosis

Follow up

the persistence of a positive result or a molecular re-emergence after one year of treatment is highly predictive of a clinical relapse.
Follicular lymphoma (5)

what to know

• At diagnosis: CC and/or FISH *

• Follow up: Quantitative PCR

* FISH can be performed on fresh touch print or paraffin-embedded tissue
Mantle Cell lymphoma

t(11;14)(q13;q32) - \textit{BCL1-IgH} oncogene

\begin{center}
\downarrow
\end{center}

overexpression of the Bcl1/cyclin D1 protein

\begin{center}
\downarrow
\end{center}

\textbf{cell cycle activation (G1/S phase)}

(+ other genetic alterations involving TSG such as \textit{p16})

\begin{center}
\downarrow
\end{center}

mantle cell lymphoma
Mantle cell lymphoma (2)

t(11;14)(q13;q32) / BCL1-IgH

cyclin D1 overexpression

FISH: «double fusion strategy»
Mantle cell lymphoma (3)
what to know

Conventional cytogenetic and/or FISH
“golden standard methodologies”

PCR: one major known breakpoints on \textit{Bcl1} gene
MTC in \(\sim 50\% \) of cases
- other breakpoints are heterogeneous
 and difficult to detect
 (large target region for possible rearrangement breakpoints)
Mantle cell lymphoma (3)
what to know

Methods: different levels of qualitative sensitivity

FISH > 95%

Cytogenetics ~ 80%

PCR BCL1(MTC)-JH ~ 50%

RT-PCR (CyclinD1 overexpression) ~ 100% *

* results difficult to interpret
Marginal cell lymphoma (1)

Distribution of chromosomal abnormalities according to the three ≠ subtypes

MZL of MALT type
 chromosomal translocations with site-specificity in terms of their incidence
splenic MZL
 numerical abnormalities (mainly trisomies 3, 7, 18)
nodal MZL
 numerical and structural abnormalities: del(7q),+3
Marginal cell lymphoma (2)

MALT type

<table>
<thead>
<tr>
<th>Translocation</th>
<th>Gene</th>
<th>Percentage</th>
<th>Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(11;18)(q21;q21)</td>
<td>API2-MALT1</td>
<td>15 - 40%</td>
<td>stomach, intestine, lung</td>
</tr>
<tr>
<td>t(14;18)(q32;q21)</td>
<td>MALT1-IgH</td>
<td>20%</td>
<td>salivary gland, ocular adnexa, skin, liver, lung</td>
</tr>
<tr>
<td>t(1;14)(p22;q32)</td>
<td>BCL10-IgH</td>
<td>1 - 2%</td>
<td>stomach, lung</td>
</tr>
<tr>
<td>t(3;14)(p14;q32)</td>
<td>FOXP1-IgH</td>
<td>5%</td>
<td>thyroid, skin, ocular adnexa</td>
</tr>
</tbody>
</table>
t(11;18)(p21;q21) / \textit{API2-MALT} in gastric MALT lymphoma

\textbf{FISH: “break-apart probe strategy”}

wild type MALT1: 1 \textcolor{green}{yellow} spot

splited MALT1: 1 \textcolor{green}{green} and 1 \textcolor{red}{red}

gastric MALT with t(11;18) do not respond to \textit{Helicobacter pylori} antibiotic
spleenic Marginal cell lymphoma (3)

46,XX,del(7)(q22q32)

del(7q) control probe deleted region : 7q31
Diffuse Large B cell lymphoma *(1)*

- **t(3;14)(q27;q32)**
 BCL6-IgH oncogene

- **t(3q27;v)**
 BCL6-non IgH oncogene

in 30-40% of DLBCL

\[\downarrow \]

BCL6 oncogene overexpression*

\[\downarrow \]

cell survival and proliferation

\[\downarrow \]

DLBCL

* high *BCL6* overexpression → better outcome
Diffuse Large B cell lymphoma (2)

Illustration

t(3;14)(q27;q32) \textit{BCL6-IgH}

FISH: “break-apart probe strategy”