Endometrial metaplasia

Mojgan Devouassouxx-Shisheboran
November 2013
Metaplasia

- Transformation of cells to a type not normally found in an organ.
- Most of the alterations commonly classified as endometrial metaplasia do not qualify as such and are best regarded as « cytoplasmic changes »
Endometrial metaplasia (cytoplasmic changes)

- Alteration in mullerian differentiation (aberrant mullerian differentiation)
 - Endocervical mucinous epithelium
 - Exocervical squamous epithelium
 - Endometrial stratified epithelium
 - Tubal ciliated epithelium

- Degenerative/regenerative process related to endometrial breakdown
Endometrial metaplasia

• **Epithelium**
 - *intra-glandulaire process*
 - alteration in mullerian differentiation
 - *surface epithelium*
 - regenerative changes

• **Stroma**
Progenitor/Endometrial stem cells

- Mutations
- Hormones
- Irritative/repair

Qualitative differentiations
Metaplasias and changes

Nicolae and Nogales 2011
Epithelial metaplasia or changes

- Incidence ?: 15 à 25% of endometrial curettage
- Secondary phenomena observed in a variety of conditions (unopposed estrogen stimuli or trauma):
 - IUD
 - Chronic endometritis
 - Breakdown
 - Dysfunctional uterine bleeding (hormonal dysfunction, anovulatory cycles)
 - Polyp
 - Hyperplasia or carcinoma
Epithelial metaplasia or changes

- **Asymptomatic**: “the pathologist disease” (not usually the cause of uterine bleeding)
- Identify the initial endometrial lesion (non-neoplastic or neoplastic)
Endometrial epithelial metaplasia (changes)

1. Tubal (or ciliated) metaplasia
2. Squamous cell metaplasia
3. Mucinous metaplasia
4. Eosinophilic metaplasia
5. Secretory or clear cell metaplasia
Endometrial epithelial metaplasia (changes)

1. Tubal (or ciliated) metaplasia
2. Squamous cell metaplasia
3. Mucinous metaplasia
4. Eosinophilic metaplasia
5. Secretory or clear cell metaplasia
1- ciliated or tubal metaplasia

- Not a true metaplasia: ciliated cells (up to 20%) are normally present along the surface epithelium, most numerous in proliferative endometrium
1- ciliated cell or tubal changes

- In the glandular epithelium: Response to a chronic estrogenic stimulation
- Anovulatory cycles (disordered proliferative endometrium)
- Hyperplasia, polyp
- Carcinoma (endometrioid, variante ciliated cells)
Glands lined by secretory and ciliated cells: eosinophilic cytoplasm, cilia at luminal borders, round and enlarged nuclei.
When seen in hyperplastic glands, rounding and enlargement of nuclei should not be considered as evidence of atypia.
Endometrial epithelial metaplasia (changes)

1. Tubal (or ciliated) metaplasia
2. Squamous cell metaplasia
3. Mucinous metaplasia
4. Eosinophilic metaplasia
5. Secretory or clear cell metaplasia
Squamous cell metaplasia
34%

- Mature
- Immature (morules)
2- Squamous metaplasia: mature

- **Surface epithelium**: regenerative changes
 - chronic endometritis, IUD, cervical stenosis and pyometra in elderly women
 - mature: ichthyosis uteri
2- Squamous metaplasia: immature

- Intra-glandular: morule
Unopposed estrogenic stimuli
• Hyperplasia
• Polyp

• 25% endometrioid carcinoma
Different immunoprofile

Houghton et al, 2008

<table>
<thead>
<tr>
<th></th>
<th>P16</th>
<th>B-catenin</th>
<th>RE</th>
<th>CD10</th>
<th>CDX2</th>
<th>P63</th>
<th>HMW keratin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morule</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Mature squam</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Morule : squamous metaplasia?
Complex hyperplasia with squamous metaplasia (ER)
CD10
Lin et al, 2009
66 cases of intraglandular squamous metaplasia in biopsy/curettage

<table>
<thead>
<tr>
<th>Morphology</th>
<th>N</th>
<th>Normal</th>
<th>Persistence</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>No glandular lesion</td>
<td>31</td>
<td>77.4</td>
<td>16.1</td>
<td>6.5</td>
</tr>
<tr>
<td>Focal complexity of glands</td>
<td>9</td>
<td>88.9</td>
<td>11.1</td>
<td>0</td>
</tr>
<tr>
<td>Complex and/or atypical glands (EIN)</td>
<td>26</td>
<td>42.3</td>
<td>38.5</td>
<td>19.2</td>
</tr>
</tbody>
</table>

Mean FU 31 months (%)
Morular metaplasia in endometrial biopsy

• There should be a high index of suspicion of an associated endometrial hyperplasia or neoplasia: recommend curettage

• Over interpretation of morules leading to erroneous dgc of malignancy

• Focus on the associated glandular elements: architectural complexity and cytological atypia: multiple levels
Endometrial epithelial metaplasia (changes)

1. Tubal (or ciliated) metaplasia
2. Squamous cell metaplasia
3. Mucinous metaplasia
4. Eosinophilic metaplasia
5. Secretory or clear cell metaplasia
Mucinous metaplasia 24%

Endocervical type

Intestinal type
Endometrial mucinous lesions (Nucci et al, 1999)

- Reviewed 102 curettages and 36 hysterectomy and classified mucinous lesions according to architectural complexity
- Type A: 19 cases
- Type B: 17 cases
- Type C: 16 cases
Type A (37% cases): average FU 1 year

- Normal glandular architecture or slightly more complex, micropapillary with small tufts projected from otherwise benign appearing glands
- Benign FU in 85% cases
Type B: microglandular pattern (32%) FU 5 M
- Rigid, punched out spaces
- 15/17 cases: ADK grade 1 (12) or ACH (3)
Cervical microglandular hyperplasia

Young lady under hormonal influence (pregnancy or contraception): no atypia or mitosis
Type B

- Cervical microglandular hyperplasia is rare in postmenopausal women (6% with HRT)
- Ask for curettage or new biopsy in 6 months (associated with low grade ADK)
- Need close follow up if not immediate removal
Type C: Complex papillary (31%): average FU 26 days

- High degree of architectural complexity with extensive glandular budding, cribriforming, branching of villous structures
- All had ADK (1/3 grade 2)
Mucinous lesions

Mazur et Kurman

• Without architectural complexity or nuclear enlargement: true metaplasia

• If architectural complexity and/or nuclear enlargement:

 « complex (and/or atypical) mucinous proliferation cannot exclude carcinoma »
Papillary metaplasia 12%

- Polyp (70%), HRT, Tamoxifen
- Associated with metaplasia 70% (90% are mucinous metaplasia)
Papillary metaplasia (lesion)

- Simple
- Complex

Lehman and Hart, 2001 (n = 9)
Philip et al, 2013 (n = 49)
Papillary metaplasia (proliferation)

- **Simple (60% of cases)**
 - localized and limited to 1 or 2 foci or <50% of polyp surface
 - short, non branching stalks or occasional secondary branches or detached papillae
Simple papillary proliferation

• 88% benign outcome
• Usually confined to the polyp and completely removed with it

Lehman and Hart, 2001 (n = 9)
Philip et al, 2013 (n = 49)
Papillary metaplasia (proliferation)

• Complex (40%)
 - complex papillae with frequent secondary and complex branches or diffuse and crowded intracystic papillae
 - > 50% polyp
 - >3 foci within the specimen
complex papillary proliferation
complex papillary proliferation

- 81% had concurrent or subsequent premalignant (atypical or non atypical CH) or carcinoma (35% of cases: associated with or in separate focus)

- Best designated as « complex papillary hyperplasia »

 Lehman and Hart, 2001 (n = 9)
 Philip et al, 2013 (n = 49)
Endometrial epithelial metaplasia (changes)

1. Tubal (or ciliated) metaplasia
2. Squamous cell metaplasia
3. Mucinous metaplasia
4. Eosinophilic metaplasia
5. Secretory or clear cell metaplasia
Eosinophilic metaplasia

= immature stage of mucinous metaplasia

• Abundant, dense, pink cytoplasm with granulations

• Nuclei centrally located, rounded, small nucleoli
Eosinophilic or oncocytic metaplasia

- Normal endometrium or associated with various non-neoplastic or neoplastic conditions

- The assessment of the architecture of the glands and cytological features should distinguish metaplasia from ACH and oncocytic carcinoma
Eosinophilic (papillary) syncytial metaplasia

- Regenerative changes
- Focal process,
- Surface epithelium
- Associated with glandular and stromal breakdown and bleeding (non-physiological breakdown)
• Syncytial aggregates of cells with abundant eosinophilic cytoplasm and indistinct cell borders
• Pseudopapillae formed by tufting and cell stratification
• Occasional reactive nuclear atypia and rare mitoses
• Nuclear debris and neutrophils
Associated with breakdown: stromal collapse with stromal blue balls, fibrin, neutrophils, nuclear debris
Endometrial surface papillary syncytial change (SPSC)

- Relevant to differential diagnosis with incipient, surface serous papillary carcinoma (intraepithelial carcinoma : EIC)
 - Associated with breakdown changes
 - Focal and surface epithelium
 - Immunophenotype:
 - Weak p53
 - Low or absent Ki67 index
 - Strong p16_{INK4A} positivity
Differential diagnosis: intraepithelial carcinoma (EIC)

- Extensive and intraglandular
- Atypia and mitoses ++++
- P53 ++++, Ki67++++
Endometrial epithelial metaplasia (changes)

1. Tubal (or ciliated) metaplasia
2. Squamous cell metaplasia
3. Mucinous metaplasia
4. Eosinophilic metaplasia
5. Secretory or clear cell metaplasia
Clear cell metaplasia (hobnail) 10%

- Pseudo Arias Stella
- Progesteron or tamoxifen therapy
- Radiation therapy
Clear cell metaplasia

- Within endometrial glands and not in the surface
- Cells with clear cytoplasm
- Focal, no atypia or mitosis, no papillary formation
HNF1 beta

- Hepatocyte nuclear factor 1-beta: transcription factor recognized as sensitive and specific marker for ovarian CCC
- In endometrium: it is sensitive but not specific of CCC
 - 73% CCC
 - 60% UPSC
 - 35% endometrioid car.
 - 100% Arias Stella and CC metaplasia (at least some nuclear +)

Fadare and Liang, 2012
Endometrial stromal metaplasia

- Osseous or cartilaginous metaplasia
 - chronic endometritis or previous pregnancy (80%)
 - differential diagnosis:
 heterologous elements in mixed müllerian tumors
 fœtal debris in abortion
Cartilage
• **Smooth muscle metaplasia**: « tumorlet »
 - Small nodule within the stroma not connected to the myometrium (different from submucosal leiomyoma)
Adipose metaplasia
The term metaplasia: is not a diagnostic. It simply declares a lesion to be non-endometrioid in appearance without specifying it as benign, premalignant or malignant.

The pathologist should attempt to determine the underlying lesion, looking the degree of glandular complexity and nuclear atypia:
- reactive/degenerative,
- polyp or simple hyperplasia,
- atypical hyperplasia/EIN or carcinoma (47% of EIN show metaplasia).

Carlson et Mutter 2008